LeetCode 专题突击:Graph都差不多嘛=v=

发布于 2023-06-16  2342 次阅读


前言

这个专题主要是关于图的算法,图的算法题其实主要就是通过构建图的数据结构,然后对图进行遍历,从而解决问题。

遍历的方法有两种,一种是深度优先遍历,一种是广度优先遍历。

总的来说,这种类型的题,时间复杂度往往都是 O(N),因为每个节点都只需要遍历一遍。

让我们来看一些例题,这里面包含一些我们专题总结过的题,不过这里我们会同时通过 BFS 和 DFS 来解决,好让我们知道两种方法的区别。

matrix

200. number of islands

这个题目是一个非常经典的题目,我们可以通过 DFS 和 BFS 来解决。

test cases:

input:
[
    ["1","1","1","1","0"],
    ["1","1","0","1","0"],
    ["1","1","0","0","0"],
    ["0","0","0","0","0"]
]
output: 1

input:
[
    ["1","1","0","0","0"],
    ["1","1","0","0","0"],
    ["0","0","1","0","0"],
    ["0","0","0","1","1"]
]

output: 3

DFS:

class Solution:

    def numIslands(self, grid: List[List[str]]) -> int:

        def dfs(grid, i, j):
            grid[i][j] = '0'
            for x, y in (i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1):
                if 0 <= x < len(grid) and 0 <= y < len(grid[0]) and grid[x][y] == '1':
                    dfs(grid, x, y)

        count = 0
        for i in range(len(grid)):
            for j in range(len(grid[i])):
                if grid[i][j] == '1':
                    dfs(grid, i, j)
                    count += 1

        return count

BFS:

class Solution:
    def numIslands(self, grid: List[List[str]]) -> int:
        if not grid:
            return grid

        row = len(grid)
        col = len(grid[0])
        count = 0

        def bfs(grid, i, j):
            q = collections.deque([(i, j)])
            grid[i][j] = "#" # 标记已经访问过的陆地

            while q:
                cur_x, cur_y = q.popleft()
                for x, y in (cur_x + 1, cur_y), (cur_x - 1, cur_y), (cur_x, cur_y + 1), (cur_x, cur_y - 1): # 上下左右四个方向
                    if 0 <= x < row and 0 <= y < col and grid[x][y] == "1": # 如果是陆地,那么就把它放入队列中
                        q.append((x, y))
                        grid[x][y] = "#"

        for i in range(row):
            for j in range(col):
                if grid[i][j] == "1":
                    bfs(grid, i, j)
                    count += 1

        return count

复杂度分析:

  • 时间复杂度:O(MN),其中 M 和 N 分别为行数和列数。
  • 空间复杂度:O(MN),在最坏情况下,整个网格均为陆地,深度优先搜索的深度达到 MN。

130. surrounded regions

这个题目的描述就是,给定一个二维的矩阵,里面有 XO,我们需要把被 X 包围的 O 变成 X

test cases:

input:
[
    ["X","X","X","X"],
    ["X","O","O","X"],
    ["X","X","O","X"],
    ["X","O","X","X"]
]
output:
[
    ["X","X","X","X"],
    ["X","X","X","X"],
    ["X","X","X","X"],
    ["X","O","X","X"]
]

这道题的思路是,我们先把边界上的 O 变成 E,然后再把里面的 O 变成 X,最后再把 E 变成 O

BFS:

class Solution:
    def solve(self, board: List[List[str]]) -> None:
        """
        Do not return anything, modify board in-place instead.
        """
        if not board:
            return board

        from itertools import product
        borders = list(
                    product(
                        range(len(board)),
                        [0, len(board[0]) - 1]
                    )) \
                + list(
                    product(
                        [0, len(board) - 1],
                        range(len(board[0]))
                    ))

        def bfs(board, i, j):
            q = collections.deque([(i, j)])

            while q:
                cur_x, cur_y = q.popleft()
                if board[cur_x][cur_y] != "O":
                    continue
                board[cur_x][cur_y] = "E"
                for x, y in (cur_x + 1, cur_y), (cur_x - 1, cur_y), (cur_x, cur_y + 1), (cur_x, cur_y - 1):
                    if 0 <= x < len(board) and 0 <= y < len(board[0]):
                            q.append((x, y))

        for i, j in borders:
            if board[i][j] != "O":
                continue
            bfs(board, i, j)

        for line in board:
            print(line)

        for r in range(len(board)):
            for c in range(len(board[0])):
                if board[r][c] == 'O':   board[r][c] = 'X'  # captured
                elif board[r][c] == 'E': board[r][c] = 'O'  # escaped

DFS:

class Solution:
    def solve(self, board: List[List[str]]) -> None:
        """
        Do not return anything, modify board in-place instead.
        """
        if not board:
            return board

        from itertools import product
        borders = list(
                    product(
                        range(len(board)),
                        [0, len(board[0]) - 1]
                    )) \
                + list(
                    product(
                        [0, len(board) - 1],
                        range(len(board[0]))
                    ))

        def dfs(board, i, j):
            if board[i][j] != "O":
                return
            board[i][j] = "E"
            for x, y in (i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1):
                if 0 <= x < len(board) and 0 <= y < len(board[0]):
                    dfs(board, x, y)

        for i, j in borders:
            if board[i][j] != "O":
                continue
            dfs(board, i, j)

        for r in range(len(board)):
            for c in range(len(board[0])):
                if board[r][c] == 'O':   board[r][c] = 'X'  # captured
                elif board[r][c] == 'E': board[r][c] = 'O'  # escaped

复杂度分析:

  • 时间复杂度:O(MN),其中 M 和 N 分别为行数和列数。
  • 空间复杂度:O(MN),在最坏情况下,整个网格均为陆地,深度优先搜索的深度达到 MN。

417. pacific atlantic water flow

这个题目的描述就是,给定一个二维的矩阵,给出能同时流向太平洋和大西洋的坐标。

test cases:

Input: heights = [[1,2,2,3,5],[3,2,3,4,4],[2,4,5,3,1],[6,7,1,4,5],[5,1,1,2,4]]
Output: [[0,4],[1,3],[1,4],[2,2],[3,0],[3,1],[4,0]]
Explanation: The following cells can flow to the Pacific and Atlantic oceans, as shown below:
[0,4]: [0,4] -> Pacific Ocean
       [0,4] -> Atlantic Ocean
[1,3]: [1,3] -> [0,3] -> Pacific Ocean
       [1,3] -> [1,4] -> Atlantic Ocean
[1,4]: [1,4] -> [1,3] -> [0,3] -> Pacific Ocean
       [1,4] -> Atlantic Ocean
[2,2]: [2,2] -> [1,2] -> [0,2] -> Pacific Ocean
       [2,2] -> [2,3] -> [2,4] -> Atlantic Ocean
[3,0]: [3,0] -> Pacific Ocean
       [3,0] -> [4,0] -> Atlantic Ocean
[3,1]: [3,1] -> [3,0] -> Pacific Ocean
       [3,1] -> [4,1] -> Atlantic Ocean
[4,0]: [4,0] -> Pacific Ocean
       [4,0] -> Atlantic Ocean
Note that there are other possible paths for these cells to flow to the Pacific and Atlantic oceans.

这道题的思路是,从边界开始,分别找到能流向太平洋和大西洋的坐标,然后求交集。

BFS:

class Solution:
    def bfs(self, ocean, heights):
        q = collections.deque(ocean)
        while q:
            i, j = q.popleft()
            for x, y in (i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1):
                if 0 <= x < len(heights) and 0 <= y < len(heights[0]) and (x, y) not in ocean and heights[x][y] >= heights[i][j]:
                    q.append((x, y))
                    ocean.add((x, y))
        return ocean

    def pacificAtlantic(self, heights: List[List[int]]) -> List[List[int]]:
        if not heights: return []

        w, h = len(heights[0]), len(heights)
        pacific = set([(i, 0) for i in range(h)] + [(0, j) for j in range(w)])
        atlantic = set([(i, w - 1) for i in range(h)] + [(h - 1, j) for j in range(w)])

        return list(self.bfs(pacific, heights) & self.bfs(atlantic, heights))

323. number of connected components in an undirected graph

这个题目的描述就是,给定一个无向图,求出有多少个连通的部分。

test cases:

Input: n = 5, edges = [[0,1],[1,2],[3,4]]
Output: 2

这道题的思路是,使用 DFS 或者 BFS 遍历图,然后记录遍历过的节点,最后返回遍历过的次数。

BFS:

class Solution:
    def countComponents(self, n: int, edges: List[List[int]]) -> int:
        graph = collections.defaultdict(list)
        for edge in edges:
            graph[edge[0]].append(edge[1])
            graph[edge[1]].append(edge[0])

        visited = set()

        def bfs(i):
            q = collections.deque([i])
            while q:
                cur = q.popleft()
                for nxt in graph[cur]:
                    if nxt not in visited:
                        visited.add(nxt)
                        q.append(nxt)

        res = 0
        for i in range(n):
            if i not in visited:
                bfs(i)
                res += 1
        return res

DFS:

class Solution:
    def countComponents(self, n: int, edges: List[List[int]]) -> int:
        graph = collections.defaultdict(list)
        for edge in edges:
            graph[edge[0]].append(edge[1])
            graph[edge[1]].append(edge[0])

        visited = set()

        def dfs(i):
            for nxt in graph[i]:
                if nxt not in visited:
                    visited.add(nxt)
                    dfs(nxt)

        res = 0
        for i in range(n):
            if i not in visited:
                dfs(i)
                res += 1
        return res

复杂度分析:

  • 时间复杂度:$O(n + e)$
  • 空间复杂度:$O(n + e)$

261. graph valid tree

这个题目的描述就是,给定一个无向图,判断是否是一棵树。

test cases:

Input: n = 5, and edges = [[0,1], [0,2], [0,3], [1,4]]
Output: true

这道题的思路是,使用 DFS 或者 BFS 遍历图,然后判断是否有环。

BFS:

class Solution(object):
    def validTree(self, n, edges):
        """
        :type n: int
        :type edges: List[List[int]]
        :rtype: bool
        """

        if len(edges) != n - 1:
            return False

        graph = [set() for _ in range(n)]
        for edge in edges:
            graph[edge[0]].add(edge[1])
            graph[edge[1]].add(edge[0])

        visited = set()
        parent = {}

        q = collections.deque([0])
        while q:
            cur = q.popleft()
            visited.add(cur)
            for nxt in graph[cur]:
                if nxt not in visited:
                    parent[nxt] = cur # 这里记录的是父节点
                    q.append(nxt)
                elif nxt != parent[cur]: # 如果当前节点已经访问过了,但是不是父节点,说明有环
                    print(parent)
                    return False

        print(parent)
        return len(visited) == n

同时这题可以尝试用 Topological Sort 来做,但是这里需要注意的是,我们需要判断是否有环,如果有环的话,就不是一棵树了。

class Solution(object):
    def validTree(self, n, edges):
        """
        :type n: int
        :type edges: List[List[int]]
        :rtype: bool
        """

        if len(edges) != n - 1:
            return False

        graph = [set() for _ in range(n)]
        for edge in edges:
            graph[edge[0]].add(edge[1])
            graph[edge[1]].add(edge[0])

        indegrees = [0] * n
        for i in range(n):
            indegrees[i] = len(graph[i])

        queue = deque([i for i, degrees in enumerate(indegrees) if degrees == 1])
        while queue:
            node = queue.popleft()
            for child in graph[node]:
                indegrees[child] -= 1
                if indegrees[child] == 1:
                    queue.append(child)

        return all(degree == 0 for degree in indegrees)

1926. nearest exit from entrance in maze

这个题目的描述就是,给定一个二维的矩阵,里面有 .+,我们需要找到从入口到出口的最短路径。

test cases:

nearest_exit_from_entrance_in_maze

Input: maze = [["+","+",".","+"],[".",".",".","+"],["+","+","+","."]], entrance = [1,2]
Output: 1
Explanation: There are 3 exits in this maze at [1,0], [0,2], and [2,3].
Initially, you are at the entrance cell [1,2].
- You can reach [1,0] by moving 2 steps left.
- You can reach [0,2] by moving 1 step up.
It is impossible to reach [2,3] from the entrance.
Thus, the nearest exit is [0,2], which is 1 step away.

这道题的思路是,我们需要先找到所有的出口,然后再从入口开始做 BFS,直到找到出口。

class Solution:
    def nearestExit(self, maze: List[List[str]], entrance: List[int]) -> int:
        q = collections.deque([(entrance[0], entrance[1], 0)])

        visited = set()
        visited.add(tuple(entrance))

        min_step = float("inf")

        def is_border(i, j):
            if entrance != [i, j]:
                return i in [0, len(maze) - 1] or j in [0, len(maze[0]) - 1]
            return False

        while q:
            i, j, step = q.popleft()
            if is_border(i, j):
                min_step = min(min_step, step)
                break

            for x, y in (i + 1, j), (i - 1, j), (i, j - 1), (i, j + 1):
                if 0 <= x < len(maze) and 0 <= y < len(maze[0]) and (x, y) not in visited and maze[x][y] == ".":
                    q.append((x, y, step + 1))
                    visited.add((x, y))

        return min_step if min_step != float("inf") else -1

复杂度分析:

  • 时间复杂度:O(MN),其中 M 和 N 分别为行数和列数。
  • 空间复杂度:O(MN),在最坏情况下,整个网格均为陆地,深度优先搜索的深度达到 MN。

133. clone graph

这个题目的描述就是,给定一个无向图,我们需要克隆这个图。

test cases:

clone_graph

Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
Output: [[2,4],[1,3],[2,4],[1,3]]
Explanation: There are 4 nodes in the graph.
1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).

这道题的思路是,我们需要用一个字典来记录已经访问过的节点,然后用 BFS 或者 DFS 来遍历整个图。

BFS:

class Solution:
    def cloneGraph(self, node: 'Node') -> 'Node':
        if not node:
            return node

        visited = {}

        q = collections.deque([node])
        visited[node] = Node(node.val, [])

        while q:
            cur_node = q.popleft()
            for neighbor in cur_node.neighbors:
                if neighbor not in visited:
                    visited[neighbor] = Node(neighbor.val, [])
                    q.append(neighbor)
                visited[cur_node].neighbors.append(visited[neighbor])

        return visited[node]

DFS:

class Solution:
    def cloneGraph(self, node: 'Node') -> 'Node':
        if not node:
            return node

        visited = {}

        def dfs(node):
            if node in visited:
                return visited[node]
            visited[node] = Node(node.val, [])
            for neighbor in node.neighbors:
                visited[node].neighbors.append(dfs(neighbor))
            return visited[node]

        return dfs(node)

复杂度分析:

  • 时间复杂度:O(N),其中 N 是图中节点的数量。深度优先搜索遍历图的过程中每个节点只会被访问一次。
  • 空间复杂度:O(N),其中 N 是图中节点的数量。空间复杂度主要取决于存储所有节点的开销,即为 O(N)。

构建

399. evaluate division

这个题目的描述是,给定一些除法式子,比如 a / b = 2.0, b / c = 3.0.,然后给定一些查询,比如 a / c, b / a, a / e, a / a, x / x.,我们需要根据已知的除法式子来计算这些查询的结果。

test cases:

Input:
equations = [ ["a", "b"], ["b", "c"] ],
values = [2.0, 3.0],

queries = [ ["a", "c"], ["b", "a"], ["a", "e"], ["a", "a"], ["x", "x"] ].
Output: [6.0, 0.5, -1.0, 1.0, -1.0 ]

这道题的思路是,我们需要用一个字典来记录已经访问过的节点,然后用 BFS 或者 DFS 来遍历整个图。

BFS:

class Solution:
    def calcEquation(self, equations: List[List[str]], values: List[float], queries: List[List[str]]) -> List[float]:
        graph = collections.defaultdict(dict)
        for equation, value in zip(equations, values):
            src = equation[0]
            dst = equation[1]
            graph[src][dst] = value
            graph[dst][src] = 1 / value

        def bfs(graph, src, dst):
            if not graph:
                return -1

            if src not in graph:
                return -1

            q = collections.deque([(src, 1)])
            visited = set()
            visited.add(src)
            while q:
                cur = q.popleft()
                if cur[0] == dst:
                    return cur[1]

                for nxt in graph[cur[0]]:
                    if nxt not in visited:
                        q.append((nxt, cur[1] * graph[cur[0]][nxt]))
                        visited.add(nxt)
            return -1

        res = []
        for query in queries:
            res.append(bfs(graph, query[0], query[1]))
        return res

复杂度分析:

  • 时间复杂度:O(N + M),其中 N 是方程式的数量,M 是方程式中字符数量的总和。对于每个查询,我们需要 O(M) 的时间来找到对应的边。
  • 空间复杂度:O(N),其中 N 是方程式的数量。我们需要 O(N) 的空间来存储图。

841. keys and rooms

这个题目的描述是,给定一个二维数组,每个数组里面的元素是一个数组,表示房间里面的钥匙,我们需要判断是否能够进入所有的房间。

test cases:

Input: [[1],[2],[3],[]]
Output: true

Input: [[1,3],[3,0,1],[2],[0]]
Output: false

这道题的思路是,我们需要先构建一个 graph,存储每个房间里面的钥匙,然后用 BFS 或者 DFS 来遍历整个图。

BFS:

class Solution:
    def canVisitAllRooms(self, rooms: List[List[int]]) -> bool:
        graph = collections.defaultdict(set)
        for i in range(len(rooms)):
            for key in rooms[i]:
                graph[i].add(key)

        q = collections.deque([0])
        visited = set()
        visited.add(0)

        while q:
            cur = q.popleft()
            for nxt in graph[cur]:
                if nxt not in visited:
                    q.append(nxt)
                    visited.add(nxt)
        return len(visited) == len(rooms)

DFS:

class Solution:
    def canVisitAllRooms(self, rooms: List[List[int]]) -> bool:
        graph = collections.defaultdict(set)
        for i in range(len(rooms)):
            for key in rooms[i]:
                graph[i].add(key)

        def dfs(graph, cur, visited):
            if cur in visited:
                return
            visited.add(cur)
            for nxt in graph[cur]:
                dfs(graph, nxt, visited)

        visited = set()
        dfs(graph, 0, visited)
        return len(visited) == len(rooms)

DFS 2 (用 stack):

class Solution:
    def canVisitAllRooms(self, rooms: List[List[int]]) -> bool:
        graph = collections.defaultdict(set)
        for i in range(len(rooms)):
            for key in rooms[i]:
                graph[i].add(key)

        stack = [0]
        visited = set()
        while stack:
            cur = stack.pop()
            if cur in visited:
                continue
            visited.add(cur)
            for nxt in graph[cur]:
                stack.append(nxt)
        return len(visited) == len(rooms)

复杂度分析:

  • 时间复杂度:O(N + M),其中 N 是房间的数量,M 是所有房间里面钥匙的数量。我们需要 O(M) 的时间来构建图。
  • 空间复杂度:O(N),其中 N 是房间的数量。我们需要 O(N) 的空间来存储图。

547. Number of Provinces

这个题目的描述是,给出一个 isConnected 的二维数组,我们需要判断有多少个省份。

test cases:

Input: isConnected = [[1,1,0],[1,1,0],[0,0,1]]
Output: 2

Input: isConnected = [[1,0,0],[0,1,0],[0,0,1]]
Output: 3

这道题的思路是,我们需要先构建一个 graph,然后通过以所有的节点为起点,用 BFS 或者 DFS 来遍历整个图。

BFS:

class Solution:
    def findCircleNum(self, isConnected: List[List[int]]) -> int:
        graph = collections.defaultdict(set)
        for i in range(len(isConnected)):
            for j in range(len(isConnected[0])):
                if i != j and isConnected[i][j] == 1:
                    graph[i].add(j)

        q = collections.deque(graph.keys())
        visited = set()
        count = 0
        for i in range(len(isConnected)):
            if i not in visited:
                q = collections.deque([i])
                while q:
                    cur = q.popleft()

                    for nxt in graph[cur]:
                        if nxt not in visited:
                            visited.add(nxt)
                            q.append(nxt)
                count += 1
        return count

DFS:

class Solution:
    def findCircleNum(self, isConnected: List[List[int]]) -> int:
        graph = collections.defaultdict(set)
        for i in range(len(isConnected)):
            for j in range(len(isConnected[0])):
                if i != j and isConnected[i][j] == 1:
                    graph[i].add(j)

        def dfs(graph, cur, visited):
            if cur in visited:
                return
            visited.add(cur)
            for nxt in graph[cur]:
                dfs(graph, nxt, visited)

        visited = set()
        count = 0
        for i in range(len(isConnected)):
            if i not in visited:
                dfs(graph, i, visited)
                count += 1
        return count

909. snakes and ladders

这个题目的描述是,给出一个 N x N 的棋盘,每个格子里面有一个数字,如果当前的格子里面的数字不是 -1,那么我们可以跳到这个数字所在的格子里面,如果当前的格子里面的数字是 -1,那么我们就不能跳到这个格子里面。我们需要判断从左上角到右下角的最小步数。

test cases:

Input: board = [[-1,-1,-1,-1,-1,-1],
                [-1,-1,-1,-1,-1,-1],
                [-1,-1,-1,-1,-1,-1],
                [-1,35,-1,-1,13,-1],
                [-1,-1,-1,-1,-1,-1],
                [-1,15,-1,-1,-1,-1]]
Output: 4

Input: board = [[-1,-1],[-1,3]]
Output: 1

这道题的思路是,我们需要先把棋盘转换成一个一维数组,然后用 BFS 来遍历整个图。

class Solution:
    def snakesAndLadders(self, board: List[List[int]]) -> int:
        if not board:
            return 0

        n = len(board)
        cells = [None] * (n**2)
        columns = list(range(0, n))
        label = 0
        for row in range(n - 1, -1, -1):
            for column in columns:
                cells[label] = (row, column)
                label += 1
            columns.reverse()

        dist = [float("inf")] * (n * n)
        dist[0] = 0
        q = collections.deque([0])

        def get_next(i):
            row, col = cells[i]
            return board[row][col] - 1 if board[row][col] != -1 else i

        while q:
            cur = q.popleft()

            if cur == n * n - 1:
                return dist[cur]

            for i in range(cur + 1, min(cur + 7, n * n)):
                nxt = get_next(i)
                if dist[nxt] > dist[cur] + 1:
                    dist[nxt] = dist[cur] + 1
                    q.append(nxt)
        return -1

复杂度分析:

  • 时间复杂度:O(N^2),其中 N 是棋盘的边长。我们需要 O(N^2) 的时间来构建棋盘,同时每个格子最多只会被遍历一次,因此总时间复杂度为 O(N^2)。
  • 空间复杂度:O(N^2),其中 N 是棋盘的边长。我们需要 O(N^2) 的空间来构建棋盘,同时需要 O(N^2) 的空间来保存 dist 数组。

433. minimum genetic mutation

这个题目的描述是,给出一个起始的基因序列,一个目标的基因序列,和一个基因库,我们需要判断从起始的基因序列到目标的基因序列,最少需要多少步。

test cases:

Input: startGene = "AACCGGTT", endGene = "AACCGGTA", bank = ["AACCGGTA"]
Output: 1

Input: startGene = "AACCGGTT", endGene = "AAACGGTA", bank = ["AACCGGTA", "AACCGCTA", "AAACGGTA"]
Output: 2

这道题的思路是,我们需要用 BFS 来遍历整个图,然后用一个 visited 数组来记录已经访问过的基因序列。

class Solution:
    def minMutation(self, startGene: str, endGene: str, bank: List[str]) -> int:
        if not bank:
            return -1

        def can_mutate(gene):
            res = []
            for item in bank:
                diff = 0
                for i in range(len(item)):
                    if item[i] != gene[i]:
                        diff += 1
                if diff == 1:
                    res.append(item)
            return res

        bank.append(startGene)
        graph = collections.defaultdict(set)
        for item in bank:
            nxt_list = can_mutate(item)
            for nxt in nxt_list:
                graph[item].add(nxt)
        q = collections.deque()
        q.append((startGene, 0))
        visited = set()
        visited.add(startGene)

        while q:
            cur, step = q.popleft()
            if cur == endGene:
                return step
            for nxt in graph[cur]:
                if nxt not in visited:
                    q.append((nxt, step + 1))
                    visited.add(nxt)
        return -1

复杂度分析:

  • 时间复杂度:O(N^2 L),其中 N 是基因库的长度,L 是基因序列的长度。我们需要 O(N^2) 的时间来构建图,同时每个基因序列最多只会被遍历一次,因此总时间复杂度为 O(N^2 L)。
  • 空间复杂度:O(N^2 * L),其中 N 是基因库的长度,L 是基因序列的长度。我们需要 O(N^2) 的空间来构建图,同时需要 O(N^2) 的空间来保存 visited 数组。

127. word ladder

这个题目的描述是,给出一个起始的单词,一个目标的单词,和一个单词字典,我们需要判断从起始的单词到目标的单词,最少需要多少步。

test cases:

Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
Output: 5

Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
Output: 0

这道题的思路是,我们需要用 BFS 来遍历整个图,然后用一个 visited 数组来记录已经访问过的单词。

我们可以试着把每一个词的相邻词都输出出来,但是这样做,会导致 tle:

class Solution:
    def ladderLength(self, beginWord: str, endWord: str, wordList: List[str]) -> int:
        if endWord not in wordList or not endWord or not beginWord or not wordList:
            return 0
        wordList.append(beginWord)
        wordList.append(endWord)
        wordList = set(wordList)
        graph = collections.defaultdict(set)
        for word in wordList: # 这样存储的话,会导致tle,因为我们嵌套了两个for loop
            for word2 in wordList:
                if word != word2:
                    diff = 0
                    for i in range(len(beginWord)):
                        if word[i] != word2[i]:
                            diff += 1
                    if diff == 1:
                        graph[word].add(word2)
                        graph[word2].add(word)
        visited = set()
        visited.add(beginWord)
        q = collections.deque([(beginWord, 1)])
        while q:
            current_word, level = q.popleft()
            for i in range(len(beginWord)):
                for word in graph[current_word]:
                    if word == endWord:
                        return level + 1
                    if word not in visited:
                        visited.add(word)
                        q.append((word, level + 1))
        return 0

不过我们可以优化一下,用*来代替每一个字母,这样就可以把每一个词的相邻词在一个 for 循环做到,就不会 tle 了:

class Solution:
    def ladderLength(self, beginWord: str, endWord: str, wordList: List[str]) -> int:
        if endWord not in wordList or not endWord or not beginWord or not wordList:
            return 0

        all_combo_dict = collections.defaultdict(list)

        for word in wordList:
            for i in range(len(beginWord)):
                all_combo_dict[word[:i] + "*" + word[i + 1:]].append(word) # 这里存储的是每一个词的每一个index的相邻词

        visited = set()
        visited.add(beginWord)

        q = collections.deque([(beginWord, 1)])

        while q:
            current_word, level = q.popleft()
            for i in range(len(beginWord)):
                temp = current_word[:i] + "*" + current_word[i+1:]

                for word in all_combo_dict[temp]:
                    if word == endWord:
                        return level + 1

                    if word not in visited:
                        visited.add(word)
                        q.append((word, level + 1))
        return 0

复杂度分析:

  • 时间复杂度:O(M^2 N),其中 M 是单词的长度,N 是单词的数量。我们需要 O(M^2) 的时间来构建所有的通用状态,同时每个单词需要花费 O(M) 的时间来构建通用状态。另外我们需要遍历所有的单词,所以总时间复杂度是 O(M^2 N)。
  • 空间复杂度:O(M^2 N),其中 M 是单词的长度,N 是单词的数量。我们需要 O(M^2) 的空间来构建所有的通用状态,同时存储每个通用状态的所有单词。另外我们需要遍历所有的单词,所以总空间复杂度是 O(M^2 N)。

topological sort

207. course schedule

这个题目的描述是,给定一个课程的数量和一些课程的先修课程,我们需要判断是否能够完成所有的课程。

test cases:

Input: 2, [[1,0]]
Output: true

Input: 2, [[1,0],[0,1]]
Output: false

这道题的思路是,先构建一个字典,用来记录每个节点的入度和出度,然后用 topological sort 来判断判断是不是能够完成所有的课程。

Topological sort:

class Solution:
    def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
        indegree = {i: set() for i in range(numCourses)}
        outdegree = defaultdict(set)

        for u, v in prerequisites:
            indegree[u].add(v)
            outdegree[v].add(u)

        print(indegree)
        q = deque([i for i in indegree if not indegree[i]])
        res = []
        while q:
            for _ in range(len(q)):
                cur = q.popleft()
                res.append(cur)
                for nxt in outdegree[cur]:
                    indegree[nxt].remove(cur)
                    if not indegree[nxt]:
                        q.append(nxt)
        print(res)
        return True if len(res) == numCourses else False

复杂度分析:

  • 时间复杂度:O(N + M),其中 N 是课程的数量,M 是先修课程的数量。在建图的过程中,我们需要 O(M) 的时间来找到每个节点的入度和出度。
  • 空间复杂度:O(N + M),其中 N 是课程的数量,M 是先修课程的数量。我们需要 O(M) 的空间来存储图。

210. course schedule ii

这个题目的描述是,给定一个课程的数量和一些课程的先修课程,我们需要返回一个完成所有课程的顺序。

test cases:

Input: 2, [[1,0]]
Output: [0,1]

Input: 4, [[1,0],[2,0],[3,1],[3,2]]
Output: [0,1,2,3] or [0,2,1,3]

这道题的思路是,先构建一个字典,用来记录每个节点的入度和出度,然后用 topological sort 来判断判断是不是能够完成所有的课程。

Topological sort:

class Solution:
    def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
        indegree = {i: set() for i in range(numCourses)}
        outdegree = defaultdict(set)

        for u, v in prerequisites:
            indegree[u].add(v)
            outdegree[v].add(u)

        q = deque([i for i in indegree if not indegree[i]])
        res = []
        while q:
            for _ in range(len(q)):
                cur = q.popleft()
                res.append(cur)
                for nxt in outdegree[cur]:
                    indegree[nxt].remove(cur)
                    if not indegree[nxt]:
                        q.append(nxt)
        return res if len(res) == numCourses else []

复杂度分析:

  • 时间复杂度:O(N + M),其中 N 是课程的数量,M 是先修课程的数量。在建图的过程中,我们需要 O(M) 的时间来找到每个节点的入度和出度。
  • 空间复杂度:O(N + M),其中 N 是课程的数量,M 是先修课程的数量。我们需要 O(M) 的空间来存储图。

269. alien dictionary

这个题目的描述是,给定一个字典,里面的单词是按照字母顺序排列的,我们需要返回一个字母顺序。

test cases:

Input: [
  "wrt",
  "wrf",
  "er",
  "ett",
  "rftt"
]

Output: "wertf"

这道题的思路是,先通过比较相邻的两个单词,找到第一个不同的字母,然后将这个字母的顺序加入到字典中,然后用 topological sort 来判断判断是不是能够完成所有的课程。

Topological sort:

class Solution:
    def alienOrder(self, words: List[str]) -> str:
        outdegree = collections.defaultdict(set)
        indegree = {c: set() for word in words for c in word}

        for first, second in zip(words, words[1:]):
            for c, d in zip(first, second):
                if c != d:
                    if d not in outdegree[c]:
                        outdegree[c].add(d)
                        indegree[d].add(c)
                    break
            else:
                if len(second) < len(first):
                    return ""

        res = []
        q = collections.deque([c for c in indegree if not indegree[c]])
        while q:
            cur = q.popleft()
            res.append(cur)
            for nxt in outdegree[cur]:
                indegree[nxt].remove(cur)
                if not indegree[nxt]:
                    q.append(nxt)

        if len(res) < len(indegree):
            return ""

        return "".join(res)

复杂度分析:

  • 时间复杂度:O(N + M),其中 N 是课程的数量,M 是先修课程的数量。在建图的过程中,我们需要 O(M) 的时间来找到每个节点的入度和出度。
  • 空间复杂度:O(N + M),其中 N 是课程的数量,M 是先修课程的数量。我们需要 O(M) 的空间来存储图。

二分图

785. is graph bipartite

这个题目的描述是,给定一个图,我们需要判断这个图是不是二分图。

test cases:

Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true

Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false

这道题的思路是,我们可以用两种颜色来标记每个节点,然后用 BFS 来遍历每个节点,如果遍历到的节点的颜色和当前节点的颜色相同,那么就不是二分图。

BFS:

class Solution:
    def isBipartite(self, graph: List[List[int]]) -> bool:
        n = len(graph)
        color = [False] * n
        visited = set()

        def bfs(vertex):
            q = collections.deque([vertex])
            visited.add(vertex)

            while q:
                cur = q.popleft()
                for nxt in graph[cur]:
                    if nxt not in visited:
                        color[nxt] = not color[cur]
                        visited.add(nxt)
                        q.append(nxt)
                    else:
                        if color[nxt] == color[cur]:
                            return False
            return True

        for vertex in range(n):
            if bfs(vertex) == False:
                return False

        return True

DFS:

class Solution:
    def isBipartite(self, graph: List[List[int]]) -> bool:
        n = len(graph)
        color = [False] * n
        visited = [False] * n

        def dfs(vertex):
            visited[vertex] = True
            for nxt in graph[vertex]:
                if visited[nxt] == False:
                    visited[nxt] = True
                    color[nxt] = not color[vertex]
                    if dfs(nxt) == False:
                        return False
                else:
                    if color[nxt] == color[vertex]:
                        return False
            return True

        for vertex in range(n):
            if visited[vertex] == False:
                if dfs(vertex) == False:
                    return False

        return True

复杂度分析:

  • 时间复杂度:O(N + M),其中 N 是图中的节点数,M 是图中的边数。在遍历图的过程中,我们需要对每个节点进行染色,并对每条边进行染色,时间复杂度均为 O(1)。
  • 空间复杂度:O(N),其中 N 是图中的节点数。我们需要使用 O(N) 的空间记录每个节点的颜色,以及使用 O(N) 的空间记录每个节点的访问情况。

886. possible bipartition

这个题目的描述是,给定一个图,我们需要判断这个图能不能被分成两个部分,使得每个部分里面的节点都没有边相连。

test cases:

Input: N = 4, dislikes = [[1,2],[1,3],[2,4]]
Output: true

Input: N = 3, dislikes = [[1,2],[1,3],[2,3]]
Output: false

这道题的思路是,我们可以用两种颜色来标记每个节点,然后用 BFS 来遍历每个节点,如果遍历到的节点的颜色和当前节点的颜色相同,那么就不是二分图。

BFS:

class Solution:
    def possibleBipartition(self, N: int, dislikes: List[List[int]]) -> bool:
        graph = collections.defaultdict(list)
        for u, v in dislikes:
            graph[u].append(v)
            graph[v].append(u)

        color = [0] * (N + 1)
        for i in range(1, N + 1):
            if color[i] == 0:
                q = collections.deque([i])
                color[i] = 1
                while q:
                    cur = q.popleft()
                    for nxt in graph[cur]:
                        if color[nxt] == 0:
                            color[nxt] = -color[cur]
                            q.append(nxt)
                        else:
                            if color[nxt] == color[cur]:
                                return False
        return True

DFS:

class Solution:
    def possibleBipartition(self, N: int, dislikes: List[List[int]]) -> bool:
        graph = collections.defaultdict(list)
        for u, v in dislikes:
            graph[u].append(v)
            graph[v].append(u)

        color = [0] * (N + 1)
        for i in range(1, N + 1):
            if color[i] == 0:
                color[i] = 1
                if self.dfs(i, color, graph) == False:
                    return False
        return True

    def dfs(self, vertex, color, graph):
        for nxt in graph[vertex]:
            if color[nxt] == 0:
                color[nxt] = -color[vertex]
                if self.dfs(nxt, color, graph) == False:
                    return False
            else:
                if color[nxt] == color[vertex]:
                    return False
        return True

复杂度分析:

  • 时间复杂度:O(N + M),其中 N 是图中的节点数,M 是图中的边数。在遍历图的过程中,我们需要对每个节点进行染色,并对每条边进行染色,时间复杂度均为 O(1)。
  • 空间复杂度:O(N),其中 N 是图中的节点数。我们需要使用 O(N) 的空间记录每个节点的颜色,以及使用 O(N) 的空间记录每个节点的访问情况。
做一个平静且愿意倾听的人。
最后更新于 2023-06-16